
Innovate Quickly with
Ephemeral Pre-production
Environments
Eliminate static staging sites and testing
queues with automation

July 2022

Contents

What is an “Environment as a Service” 4

What Does Ephemeral Mean in Terms of Technology 4

How Ephemeral Environments Benefit DevOps Teams? 4

Obstacles Found in Current DevOps Process 5

Manual and Antiquated Processes Inhibit Speed of Innovation 5

A Bloated Software Development Life Cycle 6

Traditional Static Testing Methods Aren’t Enough 7

“Works on My Machine” Issues 8

Three Ways to Streamline DevOps Processes
and Increase the Speed of Innovation 9

Accelerate Release Cycles while Reducing Cloud Costs 9

Static Test Environments Become Dynamic Pre-Production Environments 10

Stakeholders become Part of the Application Development Process 11

A Modern Tool for to Improve Developer Velocity
and Reduce Cloud Costs 12

Roost Ephemeral Environments as a Service Platform 12

The Roost platform 12

How the Roost Platform Works 13

Ephemeral Pre-production
Environments: The New Gold
Standard for DevOps
It is time to rethink the software development
life cycle and eliminate static staging and testing
queues in order to innovate more quickly.

With the number of services proliferating, developers are now working on a
smaller and smaller subset of them. This has made effective testing of service
changes and pull requests (PR) with dependencies a monumental task.

Current processes require developers to wait in a queue before their PR can be
tested or is accessible to a staging environment for testing and certification. This
process slows down PRs from merging into the main branch thus delaying releases.
And, to make matters worse, if the pull request fails in testing the whole cycle starts
again — consuming resources and time while increasing change failure rates. In order
to maximize the productivity gain of a pull request, every artifact in the DevOps pipeline
needs to become ephemeral.

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 3

what is an “environment as a service”
An environment as a service (EaaS) is a space where teams can experience and interact
with shareable and testable applications crafted using configuration, infrastructure and
dependent services.

EaaS is a way of delivering development infrastructure and services to run an application in
an ephemeral testing space that is both dynamic and shareable. It removes the burden of
creating custom scripts and managing complex software in order for developers to create a
pre-production testing environment.

what does ephemeral Mean in terms of technology
Ephemeral simply means without fixed boundaries on life spans. An ephemeral environment
is used as long as it is needed, no more and no less. The primary difference between an
ephemeral environment and a long-lasting environment is not necessarily the length of time it
runs, but that the ephemeral environment can be quickly spun up and just as easily discarded.

It also means there are clear stages of life. At the start of life and during lifetime, an entity
can borrow resources from the environment and when it shuts down or terminates, these
resources are (hopefully) returned back to the environment.

Ephemeral environments used for software development are designed fundamentally to be
short-lived and to eventually go away.

How Ephemeral Environments Benefit DevOps Teams?
Ephemeral environments speed-up releases by automatically testing an application with only
relevant dependencies which are auto-provisioned at pull request.

Ephemeral environments are a powerful and simple way to on-demand spin up the most
complicated pre-production environment. These preview environments can be created
for every pull request, developers can work on multiple features at the same time and
simultaneously share environments with stakeholders for review. This increases deployment
velocity, eliminates change failure rates and speeds up the release of containerized
microservices decreasing downtime in production.

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 4

Obstacles Found in Current DevOps Process

Manual and antiquated processes Inhibit speed of Innovation
In the 2021 Global DevOps Report, Dynatrace cites that DevOps teams are
expected to increase the frequency of software release by 58 percent within the next
two years.

No software development teams can increase release rates this much without
modernizing their current manual development processes that are done in isolation
or testing that occurs on a static staging site.

Teams that rely on custom scripting only create drag and make changes slow and
labor intensive.

Without modernization of the way environments are created, managed and
discarded innovation speeds will continue to be inhibited and the rate of innovation
will not meet demand.

58%

is the expected increase in
frequency of software releases

within the next two years.

“Organizations are under more pressure
than ever to drive faster innovation and
deliver new digital experiences to their
customers, partners, and employees.
In response to this, DevOps and SRE
practices are becoming increasingly
critical. Organizations have already
made great progress driving DevOps
across their applications, but need
to scale these efforts further to
deliver new products and services
with maximum speed, quality, and
reliability.” 1

1 https://assets.dynatrace.com/en/
docs/report/13488-global-devops-
report-2021.pdf

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 5

https://assets.dynatrace.com/en/docs/report/13488-global-devops-report-2021.pdf
https://assets.dynatrace.com/en/docs/report/13488-global-devops-report-2021.pdf
https://assets.dynatrace.com/en/docs/report/13488-global-devops-report-2021.pdf

Figure 1. Traditional Five-step Software Development Cycle

pre-productIon

1
developMent

2
testInG

3
InteGratIon

4
staGInG

5
productIon

a Bloated software development life cycle
In the past two decades, a five-stage software development life cycle has become the
standard process. However, it over-emphasizes the three middle stages. The two most
important phases are development and production.

Development is where the application comes to life, while production is where it actually
lives. Engineers need to focus on these two stages – the beginning and the end – to move
applications quickly and efficiently to production.

But the problem lies in the fact that, in today’s development process, there is no place
for developers to test and validate code with production-ready services. Also, there are
issues with traditional testing environments which only allow developers to do basic testing
and validation of code. It becomes impossible for efficient testing to occur when dealing
with modern complex architectures such as containers, micro services and cloud-native
applications. Complexity scales faster than the number of services.

The three-phase, pre-production stages (continuous integration), traditionally helped with unit
testing of applications. This worked well for monolithic applications, but with the proliferation
of containers and micro services has lost its effectiveness. With the size of code continuously
shrinking, micro services and applications have now become first-class citizens. A new
framework is needed to battle harden these services and cloud-native applications which focus
on service-to-service issues.

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 6

traditional static testing Methods aren’t enough
Testing is an integral part of any DevOps release cycle and many continuous integration (CI)
tools have “run tests” as one of the software development processes. These processes do
basic testing and validation of code; however, the static nature of most testing sites makes it
impossible for efficient testing to occur when dealing with modern complex architectures such
as containers, micro services and cloud-native applications.

And, to complicate matters, every pull request has a nuanced definition of the environment it
needs, and may have requirements not provided on most test environments.

Even in a staging environment there may not be access to the application’s production
infrastructure, dependencies, services, databases, etc. – so real-world testing against a
pre-production environment can not actually be performed.

Because of the static nature of testing environments, they will never meet the demand of
evolved artifacts and versions of services required by a pull request.

And then there are the wait times for the hand-off from development to Q/A bogging down the
process even more with queues for testing and review slowing down the speed of innovation
to a crawl. According to the 2021 State of DevOps Report (page 7), “58 percent report that
multiple handoffs between teams are required for deployment of products and services.”

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 7

“works on My Machine” Issues
Software developers often work in isolation and manually set up and
configure workspaces on desktop environments or services that
are isolated in the cloud. These static environments can fall out of
synchronization with each other and lead to different dependency
versions and bugs that are due to environmental inconsistencies and
not necessarily code issues.

Current development processes do not provide an effective
methodology for engineers to test code or have it certified for release
before it is pushed to the next stage of the cycle. Developing in
isolation and in static environments is the root cause of “works on my
machine” issues. Because developers can not effectively test against
real production assets, bugs and integration issues are pushed into the
next phase causing downtime and hindering timely release cycles.

The article, The Secret to DevOps Success,4 points out that the lack of
collaboration is a key issue to why DevOps teams face failure.

rethinking the sdlc phases
“It makes sense to have an intermediate step between
development and production to make sure the application
has a chance to be evaluated by someone other than the
original developer before going into production. But there’s
no reason this step should require three separate environments

— one intermediate environment should be enough. I think a
good name for this environment is “production-like,” making the
software development life cycle; development –> production-like

–> production.” 2

lack of collaboration
“Successful DevOps efforts require collaboration with all
stakeholders. More often than not, DevOps efforts are instead
limited to infrastructure and operations (I&O). Organizations can
not improve their time to value through uncoordinated groups or
those focusing on I&O exclusively.” 3

2 Toward a 3-Stage Development Lifecycle, https://thenewstack.io/toward-a-3-
stage-software-development-lifecycle/

3 Gartner, Inc., The Secret to DevOps Success, April 2019, Katie Costello,
https://www.gartner.com/smarterwithgartner/the-secret-to-devops-success 4 2021 State of DevOps Report, page 35, https://puppet.com/resources/report/2021-state-of-devops-report

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 8

https://thenewstack.io/toward-a-3-stage-software-development-lifecycle/
https://thenewstack.io/toward-a-3-stage-software-development-lifecycle/
https://www.gartner.com/smarterwithgartner/the-secret-to-devops-success
https://puppet.com/resources/report/2021-state-of-devops-report

Three Ways to Streamline DevOps Processes
and Increase the Speed of Innovation
Environments as a Service platforms allow teams to realize the core goals of digital
transformation: increased deployment velocity, decreased downtime in production and more
creative uses of software throughout the organization.

1
accelerate release cycles while reducing cloud costs
EaaS platforms auto-discover environment configuration by inspecting source-code
repositories and automatically test and validate code changes. They are a powerful and simple
way to spin up the most complicated pre-production environment.

They remove the burden, cost and development time of hand-crafting scripts and managing
complex software in order for developers to create a pre-production environment for sharing
with stakeholders and automated testing. Eliminate the cost of environments running 24/7 by
scheduling the deployment time.

“The most highly evolved
organizations in our DevOps
models are adopting a platform
model that enables self-service for
developers and curates the developer
experience… A highly effective
platform provides a guided experience
for the customers of the platform and
that platform is treated as a product. It
enables stream-aligned team members
to focus on the things most important
for their customers and get common
building blocks and tools from the
platform. Its purpose is to ensure
delivery is smoother and faster.” 5

5 2021 State of DevOps Report, Page
35, https://puppet.com/resources/
report/2021-state-of-devops-report

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 9

Page 35, https://puppet.com/resources/report/2021-state-of-devops-report
Page 35, https://puppet.com/resources/report/2021-state-of-devops-report
Page 35, https://puppet.com/resources/report/2021-state-of-devops-report

2
static test environments Become dynamic pre-production environments
The only way to ensure a pull request is completely accurate and ready to merge into
production is to test the PR in a pre-production environment that mirrors the entire application.
Hand-crafting these environments for every PR would be impossible, and at the end of the day
they are still static.

An EaaS environment by design is dynamic and runs “test cases” automatically and “learns”
from system behavior so it can run dependency tests in a much faster and more efficient way.
When a PR is merged (or a change moves to the next step) it’s already validated and ready for
production. This eliminates the need for another test environment.

With EaaS platforms developers can test service changes automatically and continuously
with dependent services and production configuration within the development phase of the
cycle. This eliminates the need for CI in a unique and left-shifted way and removes many of the
unnecessary steps between development and production.

Since the environment is defined by a pull request and private to the developer numerous PRs
can be run in parallel. No more QA bottlenecks!

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 10

3
stakeholders become part of the application development process
An ephemeral preview environment can be shared simultaneously with each stakeholder via a
custom URL. They can validate deliverables using their own criteria, ensuring that each and
every service is certified prior to being released to production.

Cycles can be shortened because the traditional testing, integration and staging are no longer
needed — they have shifted into one pre-production stage.

In short, stakeholders become a part of the review and development process right from the
start and no longer have to wait to see the change in production.

CHANGE
VALIDATION

CLOUD
DEPLOYMENT

1
developMent pre-productIon

5
productIon

Figure 2. A three-stage software development life cycle accelerates development velocity and pull request merge success.

working together
“To break down barriers and forge
a team-like atmosphere… varying
teams must work together, rather
than in uncoordinated silos, to
optimize work.” 5

5 Gartner, Inc., The Secret to
DevOps Success, April 2019, Katie
Costello, https://www.gartner.com/
smarterwithgartner/the-secret-to-
devops-success

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 11

https://www.gartner.com/smarterwithgartner/the-secret-to-devops-success
https://www.gartner.com/smarterwithgartner/the-secret-to-devops-success
https://www.gartner.com/smarterwithgartner/the-secret-to-devops-success

A Modern Tool for to Improve Developer Velocity
and Reduce Cloud Costs

roost ephemeral environments as a service platform
Roost is an Environments as a Service (EaaS) platform that on-demand creates an ephemeral
pre-production environment. Engineers can effortlessly spin up an ephemeral environment
on-demand, at a specific time, or at every pull request. Once created, a Roost preview
environment URL can be shared with stakeholders to validate their deliverable. This eliminates
custom script creation and managing complex software in order to develop in a pre-
production environment.

The whole release cycle gets accelerated using this fast feedback loop, accelerating
development velocity and pull request merge success.

the roost platform

 � Effortlessly spin-up a pre-production environment at every pull request, feature branch,
or insertion point in the DevOps / GitOps pipeline.

 � Auto-discovers environment configuration by inspecting source-code repositories (e.g.
GitHub, GitLab, BitBucket) and optimizes it using the power of machine learning.

 � Automatically tests and validates by accessing all necessary containers and micro
services required to test and validate code changes instantly.

 � Reduces costs from environments running 24/7 because they can be spun up on-
demand then automatically destroyed upon PR merge.

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 12

How the Roost Platform Works

Figure 3. Roost Environments as a Service Platform helps accelerate PR merge success rates
by removing the traditional CI phase of the SDLC.

Roost Environments as a Service
(AWS, GCP, Azure)

PULL REQUEST

ARCHITECT

AI-ENABLED
AUTO-DISCOVERY

DEVOPS/SRE

QA

PREVIEW
PULL REQUEST

Merge
Release to
production and
auto-delete preview

Share Preview
Share preview URL
with stakeholders
for feedback

Auto-Discover
Automatically map
and discover service
dependencies

Create
Spin up an
ephemeral
environment

Develop
Work on
services in a
private branch

eBOOK | Innovate More QuIckly wIth epheMeral pre-productIon envIronMents 13

About Roost
Roost is an Environments as a Service platform that creates an ephemeral pre-
production environment on-demand or at every pull request. By inspecting source-
code repositories the platform auto-discovers and maps environment configuration
then optimizes it using machine learning. Once created, a Roost preview environment
URL can automatically be shared with stakeholders. The whole release cycle gets
shorter using this fast feedback loop accelerating development velocity and pull
request merge success.

 070122

roost.ai | 4950 Hamilton Avenue | San Jose, CA 95130
© 2022 Zettabytes Inc., dba Roost

	What is an “Environment as a Service”
	What Does Ephemeral Mean in Terms of Technology?
	How Ephemeral Environments Benefit DevOps Teams?

	Obstacles Found in Current DevOps Process
	Manual and Antiquated Processes Inhibit Speed of Innovation
	A Bloated Software Development Life Cycle
	Traditional Static Testing Methods Aren’t Enough
	“Works on My Machine” Issues

	Three Ways to Streamline DevOps Processes
and Increase the Speed of Innovation
	Accelerate Release Cycles while Reducing Cloud Costs
	Static Test Environments Become Dynamic Pre-Production Environments
	Stakeholders become Part of the Application Development Process

	A Modern Tool for to Improve Developer Velocity
and Reduce Cloud Costs
	Roost Ephemeral Environments as a Service Platform
	The Roost platform

	How the Roost Platform Works

